skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nagura, Motoki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Near-surface measurements of meridional velocity suggest that wind forcing excites equatorial waves in the biweekly band in the Indian Ocean. The characteristics of these waves in the deep ocean are poorly constrained, and it is unclear how well models capture the deep variability. In this work, biweekly temperature variations in a few low vertical modes in the deep east Indian Ocean are observed using seismically generated sound waves. These so-called T waves are generated by earthquakes off Sumatra and received by a hydrophone station off Diego Garcia. Changes in their travel times reflect temperature-induced sound speed variations in the intervening ocean. Regression analysis indicates that these variations are caused by westward-propagating Yanai waves. A comparison between T-wave data and model output shows generally good consistency in biweekly variations dominated by the first three vertical modes, although the biweekly variance differs by up to a factor of 2 between the data and the models. A similar degree of discrepancy appears in the comparison between the models and deep mooring measurements. These results highlight the potential of using T-wave data to study biweekly Yanai waves in the deep equatorial ocean and to calibrate numerical simulations of the variability they cause. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026